direct product, p-group, metabelian, nilpotent (class 3), monomial
Aliases: C22×C4≀C2, C42⋊19C23, C24.171D4, M4(2)⋊11C23, D4⋊6(C22×C4), Q8⋊6(C22×C4), (C22×D4)⋊28C4, C4.10(C23×C4), (C22×Q8)⋊22C4, (C2×C4).180C24, (C22×C42)⋊18C2, (C2×C42)⋊86C22, C4○D4.19C23, C23.640(C2×D4), (C22×C4).820D4, C4.180(C22×D4), C22.27(C22×D4), (C2×M4(2))⋊72C22, (C22×M4(2))⋊21C2, (C23×C4).691C22, C23.132(C22⋊C4), (C22×C4).1498C23, C4○(C2×C4≀C2), (C2×C4)○C4≀C2, C4○D4⋊15(C2×C4), (C2×C4○D4)⋊21C4, (C2×D4)⋊50(C2×C4), (C2×Q8)⋊41(C2×C4), C4.76(C2×C22⋊C4), (C2×C4).1564(C2×D4), (C22×C4).416(C2×C4), (C2×C4).462(C22×C4), (C22×C4○D4).21C2, C22.23(C2×C22⋊C4), C2.42(C22×C22⋊C4), (C2×C4).285(C22⋊C4), (C2×C4○D4).275C22, (C2×C4)○(C2×C4≀C2), SmallGroup(128,1631)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22×C4≀C2
G = < a,b,c,d,e | a2=b2=c4=d2=e4=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd=c-1, ce=ec, ede-1=c-1d >
Subgroups: 716 in 428 conjugacy classes, 180 normal (17 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C23, C42, C42, C2×C8, M4(2), M4(2), C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4○D4, C4○D4, C24, C24, C4≀C2, C2×C42, C2×C42, C22×C8, C2×M4(2), C2×M4(2), C23×C4, C23×C4, C22×D4, C22×D4, C22×Q8, C2×C4○D4, C2×C4○D4, C2×C4≀C2, C22×C42, C22×M4(2), C22×C4○D4, C22×C4≀C2
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C24, C4≀C2, C2×C22⋊C4, C23×C4, C22×D4, C2×C4≀C2, C22×C22⋊C4, C22×C4≀C2
(1 13)(2 14)(3 15)(4 16)(5 11)(6 12)(7 9)(8 10)(17 31)(18 32)(19 29)(20 30)(21 27)(22 28)(23 25)(24 26)
(1 7)(2 8)(3 5)(4 6)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 28)(2 27)(3 26)(4 25)(5 30)(6 29)(7 32)(8 31)(9 18)(10 17)(11 20)(12 19)(13 22)(14 21)(15 24)(16 23)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
G:=sub<Sym(32)| (1,13)(2,14)(3,15)(4,16)(5,11)(6,12)(7,9)(8,10)(17,31)(18,32)(19,29)(20,30)(21,27)(22,28)(23,25)(24,26), (1,7)(2,8)(3,5)(4,6)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,28)(2,27)(3,26)(4,25)(5,30)(6,29)(7,32)(8,31)(9,18)(10,17)(11,20)(12,19)(13,22)(14,21)(15,24)(16,23), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)>;
G:=Group( (1,13)(2,14)(3,15)(4,16)(5,11)(6,12)(7,9)(8,10)(17,31)(18,32)(19,29)(20,30)(21,27)(22,28)(23,25)(24,26), (1,7)(2,8)(3,5)(4,6)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,28)(2,27)(3,26)(4,25)(5,30)(6,29)(7,32)(8,31)(9,18)(10,17)(11,20)(12,19)(13,22)(14,21)(15,24)(16,23), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32) );
G=PermutationGroup([[(1,13),(2,14),(3,15),(4,16),(5,11),(6,12),(7,9),(8,10),(17,31),(18,32),(19,29),(20,30),(21,27),(22,28),(23,25),(24,26)], [(1,7),(2,8),(3,5),(4,6),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,28),(2,27),(3,26),(4,25),(5,30),(6,29),(7,32),(8,31),(9,18),(10,17),(11,20),(12,19),(13,22),(14,21),(15,24),(16,23)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)]])
56 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 2N | 2O | 4A | ··· | 4H | 4I | ··· | 4AB | 4AC | 4AD | 4AE | 4AF | 8A | ··· | 8H |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 8 | ··· | 8 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 1 | ··· | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 |
56 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | ||||
image | C1 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | D4 | D4 | C4≀C2 |
kernel | C22×C4≀C2 | C2×C4≀C2 | C22×C42 | C22×M4(2) | C22×C4○D4 | C22×D4 | C22×Q8 | C2×C4○D4 | C22×C4 | C24 | C22 |
# reps | 1 | 12 | 1 | 1 | 1 | 2 | 2 | 12 | 7 | 1 | 16 |
Matrix representation of C22×C4≀C2 ►in GL5(𝔽17)
16 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 13 | 0 |
0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 |
0 | 0 | 0 | 13 | 0 |
16 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 4 |
G:=sub<GL(5,GF(17))| [16,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,16],[16,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,13,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,13,0,0,0,4,0],[16,0,0,0,0,0,1,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,4] >;
C22×C4≀C2 in GAP, Magma, Sage, TeX
C_2^2\times C_4\wr C_2
% in TeX
G:=Group("C2^2xC4wrC2");
// GroupNames label
G:=SmallGroup(128,1631);
// by ID
G=gap.SmallGroup(128,1631);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,2804,1411,172,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^4=d^2=e^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d=c^-1,c*e=e*c,e*d*e^-1=c^-1*d>;
// generators/relations