Copied to
clipboard

G = C22×C4≀C2order 128 = 27

Direct product of C22 and C4≀C2

direct product, p-group, metabelian, nilpotent (class 3), monomial

Aliases: C22×C4≀C2, C4219C23, C24.171D4, M4(2)⋊11C23, D46(C22×C4), Q86(C22×C4), (C22×D4)⋊28C4, C4.10(C23×C4), (C22×Q8)⋊22C4, (C2×C4).180C24, (C22×C42)⋊18C2, (C2×C42)⋊86C22, C4○D4.19C23, C23.640(C2×D4), (C22×C4).820D4, C4.180(C22×D4), C22.27(C22×D4), (C2×M4(2))⋊72C22, (C22×M4(2))⋊21C2, (C23×C4).691C22, C23.132(C22⋊C4), (C22×C4).1498C23, C4(C2×C4≀C2), (C2×C4)C4≀C2, C4○D415(C2×C4), (C2×C4○D4)⋊21C4, (C2×D4)⋊50(C2×C4), (C2×Q8)⋊41(C2×C4), C4.76(C2×C22⋊C4), (C2×C4).1564(C2×D4), (C22×C4).416(C2×C4), (C2×C4).462(C22×C4), (C22×C4○D4).21C2, C22.23(C2×C22⋊C4), C2.42(C22×C22⋊C4), (C2×C4).285(C22⋊C4), (C2×C4○D4).275C22, (C2×C4)(C2×C4≀C2), SmallGroup(128,1631)

Series: Derived Chief Lower central Upper central Jennings

C1C4 — C22×C4≀C2
C1C2C4C2×C4C22×C4C23×C4C22×C4○D4 — C22×C4≀C2
C1C2C4 — C22×C4≀C2
C1C22×C4C23×C4 — C22×C4≀C2
C1C2C2C2×C4 — C22×C4≀C2

Generators and relations for C22×C4≀C2
 G = < a,b,c,d,e | a2=b2=c4=d2=e4=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd=c-1, ce=ec, ede-1=c-1d >

Subgroups: 716 in 428 conjugacy classes, 180 normal (17 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C23, C42, C42, C2×C8, M4(2), M4(2), C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4○D4, C4○D4, C24, C24, C4≀C2, C2×C42, C2×C42, C22×C8, C2×M4(2), C2×M4(2), C23×C4, C23×C4, C22×D4, C22×D4, C22×Q8, C2×C4○D4, C2×C4○D4, C2×C4≀C2, C22×C42, C22×M4(2), C22×C4○D4, C22×C4≀C2
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C24, C4≀C2, C2×C22⋊C4, C23×C4, C22×D4, C2×C4≀C2, C22×C22⋊C4, C22×C4≀C2

Smallest permutation representation of C22×C4≀C2
On 32 points
Generators in S32
(1 13)(2 14)(3 15)(4 16)(5 11)(6 12)(7 9)(8 10)(17 31)(18 32)(19 29)(20 30)(21 27)(22 28)(23 25)(24 26)
(1 7)(2 8)(3 5)(4 6)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 28)(2 27)(3 26)(4 25)(5 30)(6 29)(7 32)(8 31)(9 18)(10 17)(11 20)(12 19)(13 22)(14 21)(15 24)(16 23)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)

G:=sub<Sym(32)| (1,13)(2,14)(3,15)(4,16)(5,11)(6,12)(7,9)(8,10)(17,31)(18,32)(19,29)(20,30)(21,27)(22,28)(23,25)(24,26), (1,7)(2,8)(3,5)(4,6)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,28)(2,27)(3,26)(4,25)(5,30)(6,29)(7,32)(8,31)(9,18)(10,17)(11,20)(12,19)(13,22)(14,21)(15,24)(16,23), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)>;

G:=Group( (1,13)(2,14)(3,15)(4,16)(5,11)(6,12)(7,9)(8,10)(17,31)(18,32)(19,29)(20,30)(21,27)(22,28)(23,25)(24,26), (1,7)(2,8)(3,5)(4,6)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,28)(2,27)(3,26)(4,25)(5,30)(6,29)(7,32)(8,31)(9,18)(10,17)(11,20)(12,19)(13,22)(14,21)(15,24)(16,23), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32) );

G=PermutationGroup([[(1,13),(2,14),(3,15),(4,16),(5,11),(6,12),(7,9),(8,10),(17,31),(18,32),(19,29),(20,30),(21,27),(22,28),(23,25),(24,26)], [(1,7),(2,8),(3,5),(4,6),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,28),(2,27),(3,26),(4,25),(5,30),(6,29),(7,32),(8,31),(9,18),(10,17),(11,20),(12,19),(13,22),(14,21),(15,24),(16,23)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)]])

56 conjugacy classes

class 1 2A···2G2H2I2J2K2L2M2N2O4A···4H4I···4AB4AC4AD4AE4AF8A···8H
order12···2222222224···44···444448···8
size11···1222244441···12···244444···4

56 irreducible representations

dim11111111222
type+++++++
imageC1C2C2C2C2C4C4C4D4D4C4≀C2
kernelC22×C4≀C2C2×C4≀C2C22×C42C22×M4(2)C22×C4○D4C22×D4C22×Q8C2×C4○D4C22×C4C24C22
# reps11211122127116

Matrix representation of C22×C4≀C2 in GL5(𝔽17)

160000
016000
001600
000160
000016
,
160000
01000
00100
00010
00001
,
10000
016000
001600
000130
00004
,
10000
00100
01000
00004
000130
,
160000
01000
001600
000160
00004

G:=sub<GL(5,GF(17))| [16,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,16],[16,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,13,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,13,0,0,0,4,0],[16,0,0,0,0,0,1,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,4] >;

C22×C4≀C2 in GAP, Magma, Sage, TeX

C_2^2\times C_4\wr C_2
% in TeX

G:=Group("C2^2xC4wrC2");
// GroupNames label

G:=SmallGroup(128,1631);
// by ID

G=gap.SmallGroup(128,1631);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,2804,1411,172,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^4=d^2=e^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d=c^-1,c*e=e*c,e*d*e^-1=c^-1*d>;
// generators/relations

׿
×
𝔽